Leveraging CNL’s Capabilities for Nuclear Forensics
Kristin Leeder, Ike Dimayuga, Marina Totland - Canadian Nuclear Laboratories
Guy Jonkmans - Defence Research and Development Canada
Ali El-Jaby - Canadian Nuclear Safety Commission

Nuclear Materials Science, Processing and Signature Discovery Workshop, 2018 May 1-2
Leveraging CNL’s Capabilities for Nuclear Forensics

Outline

Background
- Canadian National NF Capability Project

Operational Exercise
- Objectives
- Initial phase of response
- Evidence examination
- Conclusions

Next steps

On-going capability development
- CSSP Projects
- AECL FNST Program
- CNL Facilities

Summary
Leveraging CNL's Capabilities for Nuclear Forensics

Background - CNNFCP

Under the Canadian Safety and Security Program, Defence R&D Canada's Centre for Security Science initiated the Canadian National Nuclear Forensics Capability Project (CNNFCP) in 2012.

Scope includes establishment of (a) a National Laboratory Network capable of comprehensive NF analysis and classical forensic analysis of radiologically-contaminated evidence, and (b) a National Nuclear Forensics Library cataloguing characteristics and signatures of RN materials under regulatory control.

Whole-of-government approach involving several federal S&T agencies (DRDC CSS & DRDC Ottawa, AECL/CNL, CNSC, NRC, RMC, HC), with the active participation and guidance of military, public security, and law enforcement (RCMP, CAF, PSCan, GAC).
Leveraging CNL’s Capabilities for Nuclear Forensics

CNNFCP Outcomes

Canada has made significant progress in working towards a coordinated and comprehensive national nuclear forensics capability.

- Leveraging existing capabilities within government, the Lab Network demonstrated the following:
 - Identified/prioritized deficiencies in the existing capability,
 - Developed guidelines and procedures,
 - Delivered training courses, and
 - Evaluated the NF lab network capability through a materials exercise.

- Prototype NNFL for UOC materials was created
 - Novel techniques for both chemistry-driver data analytics and higher-order mathematical approaches
 - Significant advancements in the comparative assessment of UOCs while identifying the critical signatures.
Leveraging CNL’s Capabilities for Nuclear Forensics

Operational Exercise Overview

• Through the Canadian Safety and Security Program, an exercise was held in February 2016
 o Verify the inter-operability of NF Lab Network with RCMP in response to an illegal radioactive source.
 o Test activating the network and conducting traditional forensic exam in a nuclear facility.

• Event:
 o Package flagged at the Parliamentary Mail Room (Ottawa); RCMP response.
 o Dense container, probably lead, inside cardboard
 o High radiation field when lead pig was opened

• Initial inspection:
 o Package sent to RCMP mobile lab for initial inspection.
 o Gamma spec confirmed the material was a 60Co source.
Leveraging CNL’s Capabilities for Nuclear Forensics

Exercise – Lab Network Activation

- Given the high radiation field, decided to bring the lead pig to the CNL hot cells in Chalk River (200 km NW of Ottawa).
- NF Lab Network activated (CNL, CNSC, RMC, HC, NRC)
 - Analytical plan developed
 - Evidence into the hot cells at CNL
 - Attention to maintain chain of custody at all times
Leveraging CNL’s Capabilities for Nuclear Forensics

Evidence Examination in Hot Cell

- Visual/dimensional inspection
- Traditional forensic analyses
 - Fingerprint & DNA swab
 - Serial number recovery
- Nuclear forensic analyses
 - Source age determination
Leveraging CNL’s Capabilities for Nuclear Forensics

Exercise Conclusions

The exercise demonstrated successful achievement of the main objectives:

- SOPs were effective to provide common guidance for NFLN.
- Inter-operability of lab network with RCMP was verified.
- Traditional and nuclear forensic capabilities in the hot cell facilities were demonstrated.

Best practices generated from the exercise include:

- Engaging the appropriate experts in the entire conduct of the exercise, from design to actual play.
- Use of realistic scenarios, equipment, and locations.
- Excellent teamwork and cooperation between traditional forensics and nuclear specialists.
Leveraging CNL’s Capabilities for Nuclear Forensics

Next Steps

• Formalization of an operational national NF capability
 o Led by CNSC and DRDC CSS
• Ongoing NF capability development through the Canadian Safety & Security Program
 o Nuclear Forensics Capability Advancement Project (2016-19)
 ✓ Led by the CNSC; Partners – NRC, NRCan, AECL/CNL, DND
 ✓ Enhance Canada’s national nuclear forensics capability, particularly in terms of facilities for evidence contaminated with RN, radiochronometry (U), certified reference materials, and post-detonation forensics
 o Nuclear Material Signature and Provenance Assessment Capability Project (2017-20)
 ✓ Led by the CNSC; Partners – NRC, AECL/CNL, Univ. Ottawa
 ✓ UOC signatures and data analytics approaches and algorithm development.
Leveraging CNL’s Capabilities for Nuclear Forensics

AECL Federal Nuclear S&T Program Contributions to NF Development

- Capability Enhancements for the National Nuclear Forensics Program (2016-19)
 - Potential signatures in nuclear materials, including irradiated fuel
 - National and international exercises, e.g., CMX, inter-comparison studies, virtual TTX
 - Analytical techniques for NF
- New Techniques in Nuclear Forensics (2017-20)
 - Bio-markers for attribution
 - Capability to analyze DNA samples containing radioactive materials
 - Signatures of radioactive sources based on age or impurities
 - Certified reference materials
 - Isotope Ratio Method for attribution of various threat materials
- Advanced Methodologies for Nuclear Forensics (2018-21)
 - Signatures of UOC based on physical properties (e.g., powder morphology) and relative abundances of Pb and Sr isotopes
Leveraging CNL’s Capabilities for Nuclear Forensics

CNL Facilities for NF

- Hot Cells
 - Visual and microscopic examination
 - Sample preparation for chemical analysis and metallography
 - Corrosion film thickness & integrity measurements
 - Calorimetry
 - Traditional forensics (demonstrated)
Leveraging CNL’s Capabilities for Nuclear Forensics

CNL Facilities for NF

- Recycle Fuel Fabrication Laboratories and Fuel Development Laboratories
 - Glovebox facility capable of handling alpha-active fuel (e.g., MOX)
 - Pilot-scale fuel fabrication line
 - Sample preparation for chemical analysis and metallography
 - Traditional forensics (potential)
 - Characterization techniques
 - Fuel pellet dimensions and density
 - Powder particle size and morphology
 - Optical microscopy
 - SEM (Scanning Electron Microscopy)
 - X-ray diffraction
 - Oxygen-to-metal ratios
Leveraging CNL’s Capabilities for Nuclear Forensics

CNL Facilities for NF

- **Analytical Chemistry Laboratories**
 - Chemical and Isotopic Analysis for bioassay, environmental, and fuel samples
 - Mass Spectrometry for H/D, U, Pu, FG, trace HM (Quadrupole, Thermal Ionization MS, Inductively Coupled Plasma-MS)
 - Multi-element analysis for U, Pu, major & trace elements (High-Performance Liquid Chromatography, Ion Chromatography, ICP-Atomic Emission Spectroscopy)
 - Analysis of radioactive liquids (nuclear magnetic resonance, infra-red spectroscopy)

- **Radiochemical Analysis**
 - Actinides and fission products for bioassay, fuel, and environmental samples
 - Gross alpha/beta counter
 - High resolution alpha spectrometry
 - Gamma spectrometry
 - Liquid scintillation counting
Leveraging CNL’s Capabilities for Nuclear Forensics

CNL Facilities for NF

- **Surface Science Analysis**
 - Nuclear and non-nuclear material characterization
 - Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer (EDS), Wavelength Dispersive Spectrometer (WDS) and Electron Back Scattered Diffraction (EBSD).
 - Scanning Auger Microscopy (SAM)
 - Secondary Ion Mass Spectrometry (SIMS)
 - X-ray Photoelectron Spectroscopy (XPS)
Leveraging CNL's Capabilities for Nuclear Forensics

CNL Facilities for NF

- Fuel Cycle Analysis
 - Primarily for fuel irradiation testing and fuel cycle management studies
 - Prediction of fuel composition during/after irradiation using reactor physics codes
 - Development of signature models for interpretation of isotopic data
Leveraging CNL's Capabilities for Nuclear Forensics

Summary

- Canada is working towards a coordinated and comprehensive national NF capability by leveraging existing RN capabilities
 - Established the Lab Network and demonstrated inter-operability with the RCMP in an exercise.
 - Created a prototype NNFL for UOC.
- Initiative led by CNSC and DRDC, in partnership with other agencies, to establish an operational national NF capability on behalf of the Canadian Government.
- CNL, on behalf of AECL, is contributing towards development and enhancement of national NF capabilities.
Thank you. Merci.
Questions?

Kristin Leeder
kristin.leeder@cnl.ca